Introduction to Statistical Physics

封面
CRC Press, 2001年9月20日 - 289 頁
0 書評
Statistical physics is a core component of most undergraduate (and some post-graduate) physics degree courses. It is primarily concerned with the behavior of matter in bulk-from boiling water to the superconductivity of metals. Ultimately, it seeks to uncover the laws governing random processes, such as the snow on your TV screen. This essential new textbook guides the reader quickly and critically through a statistical view of the physical world, including a wide range of physical applications to illustrate the methodology. It moves from basic examples to more advanced topics, such as broken symmetry and the Bose-Einstein equation. To accompany the text, the author, a renowned expert in the field, has written a Solutions Manual/Instructor's Guide, available free of charge to lecturers who adopt this book for their courses. Introduction to Statistical Physics will appeal to students and researchers in physics, applied mathematics and statistics.
 

讀者評論 - 撰寫評論

我們找不到任何評論。

內容

The macroscopic view
1
12 Thermodynamic variables
2
13 Thermodynamic limit
3
14 Thermodynamic transformations
4
15 Classical ideal gas
7
16 First law of thermodynamics
8
17 Magnetic systems
9
Problems
10
102 Bose enhancement
134
103 Phonons
136
104 Debye specific heat
137
105 Electronic specific heat
139
106 Conservation of particle number
140
Problems
141
BoseEinstein condensation
144
112 The condensate
146

Heat and entropy
13
22 Applications to ideal gas
14
23 Carnot cycle
16
24 Second law of thermodynamics
18
25 Absolute temperature
19
26 Temperature as integrating factor
21
27 Entropy
23
28 Entropy of ideal gas
24
29 The limits of thermodynamics
25
Problems
26
Using thermodynamics
30
32 Some measurable coefficients
31
33 Entropy and loss
32
34 The temperatureentropy diagram
35
35 Condition for equilibrium
36
37 Gibbs potential
38
39 Chemical potential
39
Problems
40
Phase transitions
45
42 Condition for phase coexistence
47
43 Clapeyron equation
48
44 van der Waals equation of state
49
45 Virial expansion
51
46 Critical point
52
47 Maxwell construction
53
48 Scaling
54
Problems
56
The statistical approach
60
52 Phase space
62
53 Distribution function
64
54 Ergodic hypothesis
65
56 Microcanonical ensemble
66
57 The most probable distribution
68
58 Lagrange multipliers
69
Problems
71
MaxwellBoltzmann distribution
74
62 Pressure of an ideal gas
75
63 Equipartition of energy
76
64 Distribution of speed
77
65 Entropy
79
66 Derivation of thermodynamics
80
67 Fluctuations
81
68 The Boltzmann factor
83
Problems
85
Transport phenomena
89
72 Maxwells demon
91
74 Sound waves
93
75 Diffusion
94
76 Heat conduction
96
77 Viscosity
97
78 NavierStokes equation
98
Problems
99
Quantum statistics
102
82 Identical particles
104
83 Occupation numbers
105
85 Microcanonical ensemble
108
86 Fermi statistics
109
87 Bose statistics
110
88 Determining the parameters
111
89 Pressure
112
810 Entropy
113
811 Free energy
114
813 Classical limit
115
Problems
117
The Fermi gas
119
92 Ground state
120
93 Fermi temperature
121
94 Lowtemperature properties
122
95 Particles and holes
124
96 Electrons in solids
125
97 Semiconductors
127
Problems
129
The Bose gas
132
113 Equation of state
148
114 Specific heat
149
115 How a phase is formed
150
116 Liquid helium
152
Problems
154
Canonical ensemble
157
123 The partition function
160
125 Energy fluctuations
161
126 Minimization of free energy
162
127 Classical ideal gas
164
128 Quantum ensemble
165
129 Quantum partition function
167
12 10 Choice of representation
168
Grand canonical ensemble
173
133 Number fluctuations
174
134 Connection with thermodynamics
175
135 Critical fluctuations
177
136 Quantum gases in the grand canonical ensemble
178
137 Occupation number fluctuations
180
138 Photon fluctuations
181
139 Pair creation
182
Problems
184
The order parameter
188
142 Ising spin model
189
143 GinsburgLandau theory
193
144 Meanfield theory
196
145 Critical exponents
197
146 Fluctuationdissipation theorem
199
147 Correlation length
200
148 Universality
201
Problems
202
Superfluidity
205
152 Meanfield theory
206
153 GrossPitaevsky equation
208
154 Quantum phase coherence
210
155 Superfluid flow
211
156 Superconductivity
213
157 Meissner effect
214
159 Josephson junction
216
1591 DC Josephson effect
218
1510 The SQUID
220
Problems
222
Noise
226
162 Nyquist noise
227
163 Brownian motion
229
164 Einsteins theory
231
165 Diffusion
233
167 Molecular reality
236
168 Fluctuation and dissipation
237
Problems
238
Stochastic processes
240
172 Binomial distribution
241
173 Poisson distribution
243
174 Gaussian distribution
244
175 Central limit theorem
245
176 Shot noise
247
Problems
249
Timeseries analysis
252
182 Power spectrum and correlation function
254
183 Signal and noise
256
184 Transition probabilities
258
185 Markov process
260
186 FokkerPlanck equation
261
187 Langevin equation
262
188 Brownian motion revisited
264
189 The MonteCarlo method
266
1810 Simulation of the Ising model
268
Problems
270
Mathematical reference
274
Notes
281
References
282
Index
284
版權所有

其他版本 - 查看全部

常見字詞

提及本書的作品

所有圖書搜尋結果 »

關於作者 (2001)

Kerson Huang, Ph.D., grew up in Canton, China and is currently a professor of physics at MIT. He and his wife Rosemary have consulted the I Ching regularly and pursued their translation through years of research.

書目資訊